IOURNAL OF COMPUTATIONAL PHYSICS 122, 13-24 (1995)

Complex Mapped Matrix Methods in
Hydrodynamic Stability Problems

ANDREW W. GILL* aND G. E. SNEDDON

Department of Mathematics and Statistics, James Cook University, Townsville 4811, Ausiralia

Received October 5, 1993; revised April 3, 1995

The ordinary differential equations governing the linear stability
of inviscid flows contain singularities at real or complex points
called critical latitudes, which degrade the accuracy of standard
numerical schemes, However, the use of a complex mapping prior
to the numerical attack offers some respite. This mapping shifts the
computational domain to a contour in the complex plane to avoid
the critical latitudes. Both quadratic and cubic complex maps are
considered in some detail. An analytic result for choosing the opti-
mum quadratic complex map in the case of a single critical |atitude
is presented. Numerical results are given for two test problems and
a barotropic vortex model. A comparison is made between methods
with and without these mappings. The resuits show that the use of
complex maps can lead to remarkably accurate solutions. © tess
Academic Press, Inc.

1. INTRODUCTION

Hydrodynamic stability calculations often involve the numer-
ical solution of singular differential equations. For example, the
linear analysis of inviscid flows results in ordinary differentiai
equations possessing singularities, called critical latitudes,
whenever the basic flow matches the wavespeed of the perturba-
tions. For unstable modes these singularities will be complex,
but for neutral curve calculations, where the wavespeed is real,
they will lie on the computational domain. Excellent reviews
of the inviscid theory of hydrodynamic stability [1, 2] indicate
the importance of these critical latitudes for the understanding
of fluid motion (for example, in meteorology and oceanogra-
phy), as well as discussing various computational issues. An-
other example containing real critical latitudes is the Sturm-
Liouville problems of the fourth kind [3, 4] which have poles
on the interior of the interval. Further examples of singular
differential equations are reviewed in [3].

The majority of numerical methods for solving these types
of problems are either matrix or shooting methods [3, 6-10].
Matrix methods (including finite difference and pseudospectral
methods) solve the eigenvalue problem by approximating it
with a finite matrix eigenvaiue problem, while shooting meth-
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ods (e.g., Runge—Kutta or predictor—corrector methods) iterate
from an initial guess at the eigenvalue and use a numerical root
finder to converge to the answer, However, all of these methods
are sensitive to the location of the critical latitudes [3}. For
critical latitedes near the computational domain, greater resolu-
tion is required to resolve the singularities accurately, resulting
in a larger matrix or smaller stepsize, depending on the method
used. When the critical latitudes are real, alternative methods
of solution must be found.

Matrix methods are generally preferred over shooting meth-
ods in solving hydrodynamic stability problems for a number
of reasons. First the differential equations are not self-adjoint
and so iterative methods have the risk of missing modes of
instability. Matrix methods, using the QR algorithm to calculate
the matrix eigenvalues, are more robust and will miss a mode
only if the resolution is too coarse to resolve that mode’s
oscillations. Second, maitrix methods do not require initial
guesses o the eigenvalues, and, finally, they return approxima-
tions to more than just one eigenvalue.

Pseudospectral methods are more attractive than finite differ-
ences due to the promise of spectral accuracy [11]. That is, the
pseudospectral errors decrease faster than any finite power of
1/N, where N is the number of trial functions. However, pseudo-
spectral methods are particularly sensitive to critical latitudes
and their proximity to the computational domain. Recent work
[£27 on the stability of barotropic vortices compared a pseudo-
spectral method with a second-order finite difference method.
It was found that both fared equally badly near the upper limit
of unstable wavenumbers where the wavespeed and, therefore,
a critical latitude, approach the real axis.

Boyd [3] suggested a remedy for this problem by the use of a
complex map. Although motivated originally by pseudospectral
methods, the complex map can equally be applied to finite
difference and shooting methods [ 13-15]. Essentially, the prob-
lem is solved on a contour in the complex plane chosen to
avoid the critical latitudes and their branch cuts and thereby to
accelerate convergence. Similar complex mapping technigues
have also been used to calculate certain integrals arising in
physics {16].

The use of maps in solving differential equations numerically
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is not new. For example, in [17] semi-infinite and infinite inter-
vals have been mapped to [—1, 1] so that polynomial methods
could be applied. These techniques have also been used by
Boyd [18, 19]. Also probiems with regions of rapid variation
or boundary layers benefit from maps which increase the resolu-
tion where the gradients are large. Recent examples include
acoustic wave propagation in discontinuous media [20] and
reaction—diffusion problems [21]. However, these mappings
are real-valued and cannot deal with real critical latitudes. The
complex maps of Boyd [3] can.

_ There is flexibility in the type of complex map used, as
well as in the complex mapping parameters they contain, and
guidelines for optimising the choices of both are provided in
[3]. The major disadvantage of the method is the loss of the
eigenfunction. The approximate solution is now represented by
function values along a complex contour and not on the real
axis. Thus complex maps are useful only on eigenproblems
where the eigenvalue is of primary interest. If the eigenfunction
is required, it must be computed by alternative methods.

In this study, we investigate once again the effectiveness of
complex maps in matrix methods (finite difference and pseudo-
spectral) for solving hydrodynamic stability problems. In partic-
ular, we wish to improve upon the results of previous work
with unmapped methods for the barotropic vortex model [12].
The work of Boyd [3] serves as our starting point and we
concentrate on the complex maps of polynomial type described
in that paper. A more general form of the cubic map is proposed,
and methods for optimizing the parameters in the maps are
considered. In the case of a single critical latitude, an analytic
result for determining the optimum map is presented.

The complex maps are described in Section 2, beginning
with the quadratic map before generalizing to cubic maps.
Calculation of the eigenfunction is also discussed in that section.
Section 3 discusses the problem of determining the best map for
both finite difference and pseudospectral methods. The complex
mapping matrix methods are applied to two test problems in
Subsection 4.1 before being applied to the barotropic stability
problem in Subsection 4.2. Section 5 contains a summary of
the results.

2. THE COMPLEX MAP

Consider a general second-order linear ordinary differen-
tial eigenproblem

a(Nu'(yy + a(»u' (3 + ad Vu(y) = 0, (1)

subject Lo linear, homogeneous, possibly mixed boundary con-
ditions

au(— 1)+ Bad' (= 1) = au(l) + Bpu'(1) = 0, 2

where the prime denotes differentiation with respect to y, the
a;{ y)y are known functions of ¥ and possibly the eigenvalue A,

and the @4, ag, B4, Bz are known real constants. It has been
assuined that the original interval has been appropriately trans-
formed to [—1, 1] {either by a linear transformation for a finite
interval or an appropriate nonlinear transformation for a semi-
infinite or infinite interval [18, 191).

For the problems considered in this paper the differential
equation (1) possesses at least one regular singular point, or
critical latitude, at the real or complex points y, defined by
@y} = 0. For inviscid hydrodynamic stability problems a;( v}
is some positive power of U(y) — ¢, where U/(y) is the undis-
turbed basic flow and ¢ is the wavespeed of the normal mode
perturbation. Here the critical latitudes occur at those points
where the wavespeeds of the perturbation and the basic flow
match. For strong instability, with Im(c) large, the critical lati-
tudes will have large imaginary parts, but for neutral stability
calculations, where the problem is solved with Im(c) — 0, the
critical latitudes will have small or zero imaginary parts and
thus lie close to or on the computational domain.

The nature of the singularities may be determined by an
examination of the Frobenious expansion around the critical
latitudes. For the problems considered in this paper the solutions
behave as either (y — yJIn(y — v or (y — y.)*?**, where
& € R, Although both solutions are continuous their derivatives
are discontinuous at the critical latitudes. For each critical lati-
tude a branch cut passing to infinity, but not crossing the compu-
tational domain, must be specified. For real critical latitudes,
physical arguments in (4] show that the cut must pass to infinity
in the upper half-plane when a3{y.) > 0 and in the lower half-
plane when a;(y.) << 0.

Pseudospectral methods, being global methods, are particu-
larly sensitive to critical latitudes and their rate of convergence
is limited by the singularity that is nearest in the sense of lying
on the smallest ellipse in the complex plane with foci at (£ 1,
0y [22]. For critical latitudes on or near the interval [—1, 1]
spectral accuracy is lost and convergence becomes very slow.
Finite difference methods are more robust in that their order
of convergence, although much lower than for pseudospectral
methods, is not affected by critical latitudes until they are within
a very small distance from [—1, 1], as noted in Boyd [3].

In either case, a complex map may be useful in restoring the
accuracy lost due to the presence of critical latitudes. Under the
independent vanable transformation y = f(x) with fa complex
function and x € {—1, [] the new (real) independent variable,
(1) and (2) become

oo 7 @y
+ e f(xNuix) =0

al £(0) ) + {m[f(x)] _f,i(x)asz(x)]} W) o

and

)8,.5‘ reo _ BB
QAU(“J) +f_,-(_:]_)H ( 1) "_QBM(]) +fl(1)

W(hH=0 (4
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FIG. 1. Example of a contour produced by the complex quadratic map
(5). The turning point of the curve is at P. Its axis is parallel to the rotated
coordinate axis Y.

The map f must be chosen so that f(—1) = —1 and f(1) = 1
implying that the new path still passes through the boundary
points, but as x varies from —1 to 1 a contour in the complex
y-plane is followed. This contour can then be chosen to avoid
the critical latitudes, but in doing so it must not cross any
branch cuts. In addition, the maps themselves should not contain
singularities and the curves generated should be both smooth
and simple. The maps considered in this paper are polynomials
of degree 2 or 3, but a generalization to higher degree is
also suggested.

2.1. Quadratic Mapping

The quadratic map in Boyd {3], to which much of that paper
was devoted, can be written as

y =flx)=x— P(x* = 1), (3

where P € C is the mapping parameter. {Here we have replaced
Boyd’s parameter A with 7, where P = /A and { = \[—_l).
This is the most general quadratic map with fixed points at
(=1, 0). If vy, and vy, are the real and imaginary parts of y, the
shape of the contour in the complex y-plane determined by this
map is a parametric curve defined by

»=x—P('—-1)
vi= —P(¥—1)

as the parameter x varies from —1 to 1. Although this curve
is a parabola it is in a nonstandard form since its axis is not
vertical (see Fig. 1). The equation for this parabola can be
written as

1
Yo Zayy byt oy - 1=0,

where ¢ = P,/P;. Under the orthogonal rotation

IRt P
Y,‘ o l b

this becomes
Yi=al,~ P{1 +a)"[(1 + )Y — 1]

which is a parabola with axis parallel to the Y¥; axis. The turn-
ing point of this parabola (in the original coordinates)
is determined from dyfdy, = 0 and occurs at (y, y) =
(P,, P) = P. Figure | illustrates this curve for the quadratic
complex map (5). Notice how the curve may bend back behind
the endpoint in order to avoid the critical latitude. This also
indicates that the curves generated by complex maps should
be viewed as parametric relations.

2.2, Cubic Mapping
The second map described by Boyd is the cubic

y=Ffxy=x— 0Ox(x* = 1), N

where Q € C is the mapping parameter. (Again we have re-
placed A, now with ¢ = iA). The curve generated by this
map is a cubic under the orthogonal transformation (6) with {
replacing P. This curve is forced to pass through the origin
and, hence, is suitable only for the case of two symmetrically
placed real critical latitudes. The most general cubic map with
fixed points at (=1, 0) has four degrees of freedom and it is
preferable to consider maps of this class when dealing with
two arbitrary critical latitudes. This general cubic map can be
defined by

y=fx)=x—(P+ Q) - 1) (8)

where P, @ € C are the mapping parameters. This map includes
both the Boyd cubic (P = 0} and the quadratic (Q = 0).
Examples of possible curves generated by (8) are given in Fig.
2. The last example illustrates a situation where a loop may
occur. Since the curves generated should be as smooth and
simple as possible these loops (as well as cusps) are unwanted
features of a complex map. The first task then is 1o idenufy
conditions on the parameters P and @ which eliminate these
possible curves being generated by the map (8).

Equation (8) can then be separated into real and imaginary
parts,

v,=x- (P, + 00X - 1)
yi= =P+ Q) — 1),
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FIG. 2. Examples of contours produced by the complex cubic map (8):
(@ P=0,Q=—13— 04i{a Boyd cubic); (b) # = 0.25 + 0751, @ =
~025+ 124 (c} P =08 + L0, Q = —L3 + 0.9 {a cubic with a loop).

so that

. +(P,+er)
PETAR Q)

The parameter x can be eliminated if the restriction

PO = P, 9
is imposed, giving

P+ Qx_

R 19

where v is a real constant. The result is the cubic equation

¥ = ~[P, + Qy, — ap)ll(y, — ay)* — 1].

Under the orthogonal transformation (6) this equation becomes

Y= af, — [P(1 + &)™ + 01 + DY + o)Y7 - 1],
(1D

s0 the generalized cubic map cannot contain any cusps or loops.
The conditions (9) and (10) can be enforced explicitly by
the substitutions
P=Bfa+i) Q=8ati),
where a, By, 81 € R, are the new mapping parameters. Equation
(8) then becomes a three-parameter family of cubics
y=f)=x-— (a+ B+ B} - 1), (1)
which includes the Boyd cubic and quadratic maps (8, = 0
and 3, = 0, respectively). Figure 3 illustrates the curve for the
cubic complex map (12).

The contour determined by the mapping (8) without the
restriction (9) is actually a Bezier cubic. These curves are
used when computer aided design is employed in numerically
controlled machinery. In these fields, also, it is important to
avoid loops and cusps. In a recent paper Stone and DeRose
[23] characterize the Bezier cubics, the result being a diagram
which describes regions of parameter space containing cusps,
loops, or inflection points. The cubic map (8) can be analysed
in the same way and it was found that the three-parameter
family (12} corresponds to the so-called one inflection point
line of the characterization diagram (their Fig. 5). Stone and
DeRose note that this is a degenerate case which occurs **when
the parametric cubic becomes the graph of a cubic function.”
This is confirmed by (11). Some generality is lost with the
cubic map (12) as there are other cubic maps that are free
of cusps and loops. However, there appears to be no other

simple constraint like (9) which guarantees such maps are pro-
duced.

FIG. 3. Example of a contour produced by the three parameter family of
cubic maps (12). With respect to the rotated coordinates (Y, ¥;) the curve is
a cubic in one variable.
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The three-parameter map also suggests a natural generaliza-
tion to higher degree. Suppose we are given n + 1 real critical
latitudes in [—1, 1] with successive branch cuts in alternating
directions. The most general complex polynomial map of de-
gree n + 2 with fixed points at (=1, 0) is

y=fx)=x = (P®+ P + - + PO — 1), (13)
where PO, PO P & C. Consider the restriction of (13) to
the (n + 2) parameter family of maps for which all the P\’ lie
on a common line through the origin. If a = PY/PY) € R is
the common ratio, and 8; = P, then this family of complex
maps is given by

y=fH) =x—(a+ B+ B+ -+ B - 1)
(14)

The parameters can be chosen so that the interior zeros of
are positioned between successive critical latitudes. It is easy
to verify that (14) generates a polynomial curve under the
orthogonal transformation (6), therefore avoiding both cusps
and loops.

2.3, Eigenfunction Calculation

Although the complex map enables accurate computation of
the eigenvalues of a problem, this is at the expense of the
eigenfunctions. The solution along the real y-axis cannot be
inferred from the solution found along the complex contour.
This is no problem, provided the eigenvalue is of primary
interest. In many hydrodynamic stability problems the neutral
curve or growth rate curve is often the characteristic sought
and this involves only the eigenvalues.

However, if the eigenfunction is required, this too can be
calculated, but at the expense of solving an additional problem.
There are several methods for doing this, as suggested in [3].
First, if the critical latitudes are complex an unmapped pseudo-
spectral or finite difference method can be used, but at higher
resolution. The expense of the increased resolution is offset by
the fact that one is now solving an ordinary boundary value
problem whose operation count is much lower than that of the
original eigenproblem. If the eritical latitude is real, such as in
neutral curve calculations and the Sturm-Lionville problems
of the fourth kind, then a finite difference method, combined
with a mapping producing a small deviation around the critical
latitude, could be used. However, fine resolution would be
needed to traverse the singular region. Another technique is to
combine a Runge—Kutta method with a Frobenious expansion
around the critical latitudes. This can be vsed for both real and
complex critical latitudes. We used this technique to compute
the eigenfunctions for the examples in Section 4. It is easy to
implement and provides an independent check on the eigenval-
ues found by the complex mapping matrix methods.

3. SELECTING THE PARAMETERS

Having adopted the complex map (12), the problem now
becomes the choice of the three parameters «, 8;, and 3;. The
best choice, from an approximation viewpoint, would be that
which maximizes the rate of convergence of the underlying
matrix method. As such it will be different for the finite differ-
ence and pseudospectral methods. In the case of a single arbi-
lrary critical latitude v,, the optimum is a quadratic map (B8, =
0). This case is treated separately, as an analytic result can
be obtained.

3.1, Single Critical Latitude

Finite difference methods are more robust than pseudospec-
tral methods in that the complex map is required only when
the critical latitude is less than ah away from (—1, 1], where
h is the smallest allowable gridsize and « is the order of the
method. This 1s because of the iocal nature and iow order of
the approximation. The critical latitudes of the transformed
problem (3} will cccur at x, = f~'(y,). This inverse function is
multivalued, in general, and for the quadratic map is given by

x,=x. =y =12 (1 — 4Py, + 4PH/2P) (15)
Hence, the single critical latitude y, 15 mapped into two critical
latitudes x. for the transformed problem. Thus if a map is
required for the finite difference method it must be chosen so
that both x; and x_ are at least ¢k away from [—1, 1]. We look
for the path satisfying this condition that is closest to the real
interval and that does not cross the branch cut of the original
critical latitude. This is achieved simply by placing P, the
turning point of the curve, directly above or below the critical
latitude a distance ah away. The branch cut direction determines
the side on which to place P. This results in simple formulae
for « and S3,.

Pseudospectral methods offer much higher orders of conver-
gence but are more sensitive to critical latirudes. The coeffi-
cients a, of a Chebyshev series of a function u(x) have the
asymptotic form a, ~ (constyn~*8§" (see [18]). The dominant
part in this expression is 87", where § is geometrically equal to
the sum of the semi-major and semi-minor axes of the smallest
ellipse with foci at (=1, 0) that passes through one of the
transformed critical latitudes x, or x.. The value of §is given by

& = min {max[jx. + (F - D, |x. — G2 = D", (16)

and the contour should be chosen so as to maximize this value.
A table of numerically calculated optimal § values and the
corresponding mapping parameters was provided in [3] for the
case of a real critical latitude. There it was assumed that the
branch cut passes to infinity in the upper half-plane. The method
was simply to evaluate & through (15) and (16) for various
mapping parameters and the given critical latitude y, and to
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pick the best one. However, the following theorem shows it is
possible to determine the optimal P analytically, not only for
a real critical latitude but for any arbitrary complex one.

THEOREM 1. Ler v, € C be an arbitrary critical latitude
and define & as in (16) and x. as in (15). Then the quadratic
complex map (5} that maximizes § has

P=(y. & (y: = 1))/2 (17)

and

1+ (1 — 4Py"
2P

5=
max{ 2p

‘1 — (1= 4Pyn

}, (18)

where the sign in (17} is chosen to avoid the branch cut associ-
ated with y,,

Proof.  The proof is in two stages. The first stage 1s to show
that, for & 0 be a maximum, x, and x_ must lie on the same
ellipse with foci at (=1, 0). The second stage is to show that
x, and x_ must be equal. This means that y, is the branch point
of 7" and the result follows.

To prove the first part, introduce

y(x) = x = (2F — )7 19
with the sign chosen to maximize |y(x)|. (With this choice,
y(x) will be well defined and analytic everywhere, except on
the interval [—1, 1].) Define the real-valued function 8(x) to
be |y(x)}, and . and . to be y(x.) and &(x.), respectively.
Then & = min{d., §_} is the quantity to be maximized. Since
x- is given by (15), y. is a function of P that is analytic
everywhere, except where x. is singular and where x. € [—1,
11. Now if P changes by AP, &2 changes by

_ dy. &y, —
A(8Y) ~7. G AP+ 7. —= AP

=2 Re(y. ar AP).

dy-

P
If for some P, 8, and &_ are not equal, and §_ < §,, say, AP
can be chosen so that A(8*) > 0. Thus &_ can be increased,
possibly at the expense of reducing &,. (The modulus of AP
may need to be chosen to be small enough to prevent &, from
becoming smaller than &_.) The overall effect will be an in-
crease in &, and so & could not be a maximum for that value
of £. Thus, for the optimum value of P, §; and - must be equal.

Suppose now that &, and §_ are equal and so x, and x_
lie on the same ellipse with foci at (1, 0). We wish (o
choose AP so that both 8. and §- will increase. This will

mean that AP must satisfy Re(APy.dy./dP} > 0 and
Re{APy_dy_/dP) = 0. Such a AP can always be found, unless

— d'}’+ = dj’&
Year T Y ape @0

where a is a positive real number. This condition must be
satisfied if P maximizes 8. Since Y,y = y-y-, (20} can be
written as

1 d dy-
v dP y. dP
Now the relationship
X — Ye
P =
21’ 22)

which follows from (5), can be used to show that

e
dpP

(x2 — 1)
k= 2yx.+ 17

This equation, together with the relationship vy 'dy/dx =
=({x? — 1)7, can be used to simplify each term in {21). After
some algebra we obtain

(2 — D"
(1 - 4Py, + 4PYyI*°

1y
y. dP

=+

(23)

(Note that the choice of sign in (23) depends on the sign chosen
in (19), as well as the choice of x; or x_.) Equation (21) now
implies (x3 — 1)'? = 2a( — 1) and so x% — 1 =& (x> —
1). Equation (22) can now be used to show that

Yo = Yo = 0Hx- = o) (24)

If we recall that x; and x_ were assumed to lic on the same
ellipse with foci at (X1, 0), (24) implies that either x, = x_
or y. must lie outside the ellipse. This second possibility would
contradict the requirement that P maximize Sandsox, = x_. [

For the case of y. € R, with the branch cut in the upper
half-plane, the optimal P lies on the semi-circle P? + P} = (3)
in the lower half-plane. The transformed critical latitude x. =
x. = x; will lie on the unit semi-circle in the upper half-plane.
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TABLE I
Optimal Quadratic Map for a Single Real Critical Latitude

Analytic Boyd
¥, e, P, § 3 P, 3§
0.0 0.000 —0.500 2414 0.0 —0.500 2.41
0.1 0.050 —0.497 2410 0.050 —0.500 240
0.2 0.100 —0.490 2.397 0.100 —0.490 2.39
03 0.150 —Q477 2373 0.150 —0.480 2.34
04 0.200 —0.458 2,342 0.200 —0.460 231
0.5 0.250 —0.433 2297 0.260 —0.450 226
0.6 0.300 —0.400 2236 0.300 —0.400 2.23
0.7 0.350 —0.357 2.154 0.360 —~0.370 2.11
08 (.400 ~0.300 2040 0.400 —0.300 2.04
0.85 0.425 —0.263 1.961 0.430 —0.265 1.94
0.90 0.450 ~0.218 1.859 0.435 -0.220 1.84
0.95 0.475 ~0.156 1.704 0.480 —{.150 1.69
0.98 0.490 —0.0995 1.541 0.492 —0.100 1.54
.99 0495 —0705 1.444 0499 —0.0712 1.43
0.998 0.499 —0.0316 1.283 0.500 -0.0312 1.27

Note. The analytic values given by (17) and (18} are presented in columns
1-4. Boyd's numericai resulls ar¢ given in columns 5-7.

These results are presented in columns 14 of Table 1. For
comparison, the results of Boyd (his Table I} are repeated in
columns 5-7, in terms of the mapping parameter P.

3.2. Several Critical Latitudes

When there is more than one critical latitude, no analytic
result is generally available and a numerical eptimization of
the mapping parameters of the complex map is required. We
look specifically at the use of the cubic map in problems with
two critical latitudes y{" and y%, The extension to multiple criti-
cal latitudes is straightforward.

With the pseudospectral method, the problem is to choose
a, By, and 3, so as to maximize &, subject to the constraint
that the contour does not cross a branch cut. In this case,
however, the points £ ~'(y,) are now the toots of a cubic equation
and so there may be up to six transformed critical latitudes. This
problem can be converted to an unconstrained minimization
problem. The objective function was chosen to be F = —§,
and a penalty, M, was added for any curve that crossed a branch
cut. The IMSL routine DBCONF was used for the minimizatior.
With some distributions of multiple critical latitudes, a qua-
dratic map may still be oprimal. This is the case for the baro-
tropic vortex model to be considered later. In this case the
optimization procedure starting with the cubic (12) correctly
produced the quadratic curve.

For the finite difference method, the map must again be
chosen so the transformed critical latitudes remain at least ah
away from the interval [—1, 1], where a is the order of the
method and k is the grid spacing. This condition does not result
in explicit formulae for the parameters «, &, and £, and so

the problem was once again converted to a minimization. The
maximum displacement of the contour from [—1, 1] was mini-
mized subject to the constraints that [Im{f (VD) > ah
for each of the transformed critical latitudes, and that the con-
tour does not cross a branch cut. Penalties proportional to
[ah — |Im{f~'(3)}]] were added if {Im{f (3"} < ah, and
a penalty M was added if the contour crossed a branch cut,

4. NUMERICAL CALCULATIONS

The problems considered here include two test problems
(with singularities on or near the real axis) and the barotropic
vortex model examined by [10, 12]. These problems are all
second-order, linear differential eigenproblems. The methods
used were the pseudospectral method (PSM) and the second-
order and fourth-order finite difference methods (FDM2 and
FDM4, respectively). The impiementation of FDM2 was as
described in [12], but with a second-order approximation being
used for the derivative term in the boundary condition. Simi-
larly, for FDM4, a fourth-order expression for the derivative
was used at the boundary. The pseudospeciral method (referred
to as the discrete ordinate method in [12]) was implemented
by collocating at Chebyshev—Lobatto nodes. The eigenfunction
was expanded in a finite sum of Lagrange polynomials, resulting
in the function values at the nodes becoming the coefficients
of the expansion. The methods were coded in Fortran 77 and
run on a Unix workstation employing double precision arithme-
tic. The generalized matrix eigenproblems were solved using
the IMSL routine DGVLCG.

4.1, Test Problems

The so-called Sturm—Liouville problems of the fourth kind
are such that both the differential equation and the eigenfunc-
tions are singular at some real interior point of the domain. In
order to investigate problems of this type, Boyd [4] considers
a related problem where the singularity is just off the real axis
and then looks at the limiting case as the singularity approaches
the axis. The most important consequence of this is that the
eigenvalues and eigenfunctions need no longer be real. Other
authors (see, for example, [24]) have adopted a different ap-
proach and interpreted such problems as being defined on spaces
that are direct sums of intervals on the real line. This approach
leads to quite different conclusions concerning the eigenvalues
and eigenfunctions. In this paper we follow the interpretation
of Boyd. We present first an exampie with a double pole at the
origin in order to illustrate an application of the quadratic map.
The differential equation chosen is

yu'(y) + (1~ Bhul(y) = 0 (25)

subject to

u(—1) = u(l)

I
=4

(26)
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The direction of the branch cut from the origin cannot be
deduced from the conditions a;5(y.) << 0 or a;(y,) > 0 since
a,(y} = 2y is zero there. We choose, arbitrarily, the direction
in the upper half-plane. Equation (25) is a transformed Bessel
equation and the solution satisfying (26) is

u(y) = Byl (i),
where A is a solution of
J_nz20EAM) = 0.

The eigenvalues occur in conjugate pairs and can be ordered
in increasing modulus. The algebraic package Mathematica
[25] was used to calculate the first two eigenvalues with positive
imaginary part. To 16 decimal places these are

A; = —4.6405397088235620 + 6.471082787454876i (27)
Az = —29.3538288396719996 + 14.9678408170587427i.

(28)

Since this problem has only a single critical 1atitude, Theorem
1 gives Popr = —0.5{ and 6 = 2.414 for the pseudospectral
method. Figure 4a compares the relative error in A, and A,
found with the pseudospectral method with & = 32 for a range
of quadratic maps by varying P, but keeping P, = 0. For A,
it is evident that P = —0.57 is optimal. For A;, the minimum
is less well defined. The most likely reason for this is the
inflvence of round off errors at these high accuracies. Similar
graphs for N = 24 and N = 16 (not presented} both show sharp
minima in the relative error of A, at P = —0.5{ and so confirm
this view.

The relative errors obtained with the optimal map are plotted
for various values of N in Fig. 4b. The unmapped method
was totally inadequate here and returned only real eigenvalues,
regardless of the number of nodes used. Because of this, the
results obtained for the map with P = —(0.1/ are presented for
comparison with the results from the optimal map. The relative
error for the optimum map decreases sharply with increasing
N until around N ~ 32, and then it increases slowly. This
increase is most likely due to roundoff error and supports the
statements concerning the minimum for A, in Fig. 4a. Also, as
suggested by Theorem 1 and Fig. 4a, convergence with this
map is significantly faster. Both A, and A, are determined to
an error of less than 107 with just 32 nodes. With the nonopti-
mal map an error of around 5 X 107 had been achieved with
the same resolution.

Like their psendospectral counterparts, the unmapped finite
difference methods also failed to resolve the singularity at
the origin. However, the optimally mapped finite difference
methods did show their expected second- and fourth-order con-
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FIG. 4. Relative errors (in logscale) in A, and A; for (25) and (26), using
the quadratic map psevdospectral methad: (a) variation with location of P =
iP; for N = 32; (b) convergence with Nfor P = Py = —0.5iand P = —0.1i.

vergence with N for both A, and A,. Here Pgpr = —ahi, where
a is the order of the method and A = 2/(N — 1) is the grid
spacing. Figure 5 shows the dependence of the relative errors
in A, and A, on the location of P for each of the finite difference
methods with N = 32.

Unlike the pseudospectral method these methods are rela-
tively insensitive to P; for P; << —ah, which is a result of
the local nature of the finite difference approximation. Surpris-
ingly they also appear insensitive in the approximate range
—ahl2 > P; > —ah. As a result, the location of the minimum
is quite broad. This indicates that for finite difference methods
a nonoptimal map will not degrade the method as much as it
would in a pseudospectral method. This robustness of finite
difference methods is useful, but one cannot look past the
extremely high accuracy of the mapped pseudospecirai method
for this problem.

To test the cubic map (12) the following problem was solved:

W) Iy =¥y - ¥ = Alu(m») =0, (29
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FIG. 5. Quadratic map finite difference method with varying P = iP, for
N = 32. Plotted are the relative errors (in logscale) in A, and A, for (25} and
(26) using (a) the second-order method; {b) the fourth-order method.

subject to

u(—1) = u(l) = 0, (30)
where ' = -0.25 —0.1iand y® = 0.5 + 0.1} are the two
complex critical latitudes with branch cuts in opposite direc-
tions. The lack of symmetry in the location of the poles excludes
Boyd’s cubic {8, = 0) from being optimal and thus necessitates
the use of the cubic map (12). The absence of real singularities
enables a comparison between the optimally mapped and un-
mapped methods, unlike the situation in solving (25} and (26).
It also eliminates the need for a complex mapping in the finite
difference methods, once a certain resolution is achieved and,
thus, only the pseudospectral method will be considered here.

Equation (29) is related to the spheroidal wave equation.
However, this does not appear to help in determining the eigen-
values of (29) and (30). Counsequently, we take as our ‘‘true”
eigenvalues the results from the optimally mapped pseudospec-
tral method at intermediate resolution. Results from higher

resolution are likely to be more affected by roundoff error.
Ordered as before, we find

A= —3.302534765803 + 4.795914298127i
A; = —8.773291569069 + 4995230738019,

(3D
(32)

where we have used the N = 100 result for A, and the N =
80 result for A,.

The parameters for the optimal cubic map for this problem
were found numerically to be

a = 06752, B, = 01208, B, = —05347, (33)
yielding a & value of 1.636, whilst the unmapped pseudospectral
method offers only § = 1.109, Figure 6 displays the conver-
gence of the pseudospectral method for both of these cases for
the first two eigenvalues of (29) and (30). The results for the
cubic mapping are just as impressive as for the quadratic map.
The first two eigenvalues are resolved to a relative error of less
than 5 X 10~ with just 40 nodes under the optimal mapping.
The unmapped pseudospectral method could only return rela-
tive errors of 7 X 107*and 4 X 107* for A, and A, respectively,
for the same resolution.

4.2. Barotropic Stability Problem

Barotropic models have become popular in recent years for
describing tropical cyclone dynamics. Many numerical stability
analyses have been carried out for representative velocity pro-
files; see, for example, [10, 12]. In [12] the pseudospectral and
finite difference methods were compared and it was found that
the pseudospectral method did not perform as well as expected.
This was finally attributed to the presence of critical latitudes
and their proximity to the real axis. The differential equation
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FI1G. 6. Convergence of the optimal cubic and the unmapped pseudospec-
tral method for {29) and (30). Plotted are the relative errors (in logscale) as
functions of N.
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governing the linear stability of normal mode perturbations
is

w'r) mt

{Q(r - c][u"(r) + e u(r)] - mLca(r) =0, (34)

¥
P r
subject to

w(O) = limu(r) =0, (35)

where ¢, the wavespeed, is the eigenvalue. Here Q(r) is the
basic angular velocity, I'(#) = r{¥'(r) + 200(r) is the vorticity,
m is the tangential wavenumber of the perturbation, and u(r)
is the radial amplitude of the perturbation to the streamfunction.
Physically valid solutions to (34) correspond to an integer wave-
number m; however, the quantities of interest in this problem
are often the values of the frequency @, = m Re(c), and the
growth rate @; = m Im(c) as functions of the wavenumber
treated continuously. We restrict the values of m to those with
Im(c) > O as the flow is then unstable. In particular, we seek
the eigenvalue with the largest imaginary part as this yields
the maximum growth rate.

For the profiles examined in [12], the critical latitudes are
determined by r. = {37'(¢), where {27! is multi-valued. Furiher-
more, the locations of the critical latitudes for a given wavenum-
ber are not known a priori, as these depend on the eigenvalue
c. If the problem is to be solved for a range of wavenumbers,
this difficulty is handled by a continuation approach. That is,
the critical latitudes for the previous wavenumber are used to
determine the complex map for the current wavenumber. For
the first wavenumber, the unmapped method was used. Provided
successive wavenumbers are close enough and the first critical
latitude is not too close to the real axis, this procedure gives
satisfactory results.

As it stands, the domain for this problem is semi-infinite.
For the profiles examined in {12] it was found that domain
truncation to [0, R] with R = 10 was preferable to an algebraic
or exponential map. This is due to the rapid decay of both ({r)
and T’(r) at large r. An appropriate outer boundary condition
was then constructed from the asymptotic form of u(r).

Five velocity profiles were examined in [12] but here only
two will be considered. These are the Chan and Williams (CW)
profile (s} = exp[—r] and the narrow Smith (SN) profile

Bl
0 = o + 1

where the shape parameters have values ! = 0.2032 and
@ = (.5218.

Results from [12] indicate an unstable wavenumber range
of 1.0 < m < 1.41 for the CW profile and 1.0 < m <X 2.44
for the SN profile. Thus the CW profile is stable to all physical
wavenumbers (integer m), whereas the SN profile has one unsta-

a
yi |
\..._ 1
-1 10
¥
F t \. t
- - Tt 5 1.
1.0 05~ 0 0
“L -1.0
\.., "
-~ —
b
yi 4
T 10
_,'
- yr
F | —
-10 ¢ 1.0
T -1.0

FIG. 7. Location of the critical latitudes in the complex y-plane where
y. = (2r, — R}R. The arrows denote the direction of increasing wavenumber:
(a) CW profile. 1.0 < m << 1.41; (b) SN profile 1.0 < m < 2.44,

ble mode at m = 2. Also from these results the critical latitudes
for both profiles can be calculated. For the CW profile there
are an infinite number given by ». = —Log(c) + 2ani. n € Z,
but only those with |n| = 1 will be influential. The critical
latitudes for the SN profile are solutions of a sixth degree
polynomial for ur? but only those with Re(r,) = 0 will be im-
portant,

Figure 7 shows how these critical latitudes vary with m. In
this figure, the linear rescaling y, = (2r, — R}R has been
applied to convert the computational domain to [—1, 1]. The
arrows denote the direction the critical latitudes move as m
increases. Thus the critical latitudes approach the real axis at
the upper limit of unstable wavenumbers for both profiles.
Notice also that. two of the SN profile’s critical latitudes are
nearly fixed. The branch cut for each critical latitude is chosen
to pass to infinity vertically upwards or downwards if the critical
latitude is in the upper or lower half-plane, respectively.

As discussed in Subsection 4.1, the absence of real critical
latitudes eliminates the need for a complex mapped finite differ-
ence method, so attention will again be focused on the pseudo-
spectral method. The distribution of the critical latitudes for
both profiles suggests a quadratic map will be sufficient. This
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was confirmed by numerical optimization of § using the cubic
map (12). The result was that 3, = 0 which yields the quadratic
map as expected.

Initial results were not as impressive as for the test problems.
This was due to the regular singularity of (34) at the origin
(r = 0), where u(r) ~ r". For noninteger m the solution exhibits
discontinuous derivatives at the origin. As this is an endpoint,
no complex mapping will help. However, this singularity is
removable by a simple dependent variable transformation such
as v(r) = r'""u(r) so that v{r) ~ r as r — 0. In the results
which follow, this transformation has been applied to (34)
before the complex map.

For the barotropic stability problem there are no closed form
solutions, so once again the eigenvalues were compared with
those obtained from the optimally mapped pseudospectral
method at intermediate resolution. To compare the convergence
of the unmapped and mapped pseudospectral methods for the
CW profile we fixed the wavenumber at m = 1.2 as in [10].
The ““true’’ nondimensional frequency and growth rate were
found to be

w, = 0.043754707539, ;= 0.019703854041. (36)

Because there is more than one critical latitude, a numerical
optimization of the quadratic map is required. The optimal map
has P = —0.1589 + 0.3746i which yields a & value of 1.855,
whilst the unmapped psevdospectral method has only & =
1.095. Figure 8a displays the convergence of both methods by
plotting the logarithm of the relative errors in both the frequency
and growth rate for various N. Once again the results for the
mapped method are impressive.

For higher wavenumber values, the critical latitude ap-
proaches the real axis and the convergence of the unmapped
method becomes even slower, whilst the mapped method main-
tains the high convergence obtained for m = 1.2. In fact, over
the entire unstable wavenumber range 1.0 < m < 1.41, the
mapped method calculated the frequencies and growth rates
with relative errors no worse than 7 X 107 and 2 X 107°,
respectively, using just 32 nodes. With the same resolution, the
unmapped method calculated the frequencies to a relative error
of no more than 4 X 1072 However, the calculated growth
rates were significantly worse. A relative error of more than
1% was returned for m = 1.23 and relative errors of more than
10% were returned for m = 1.31. This is a direct result of the
critical latitude approaching the real axis near the upper limit
of unstable wavenumbers.

For the SN profile the critical latitudes are generally much
closer to the real axis than those of the CW profile and, conse-
quently, the increase in & resulting from using the complex
quadratic map will not be as great. We first considered the
same wavenumber as for the CW profile, m = 1.2. Here we
found § = 1.100 for the unmapped pseudospectral method and
& = 1.263 for the optimal quadratic rmap. Hence the mapped
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FIG. 8. Convergence of the optimal quadratic and the unmapped pseudo-
spectral method to the frequency (w,) and growth rate (w;) of the barotropic
stability problem: {a) CW profile m = 1.2; {b) SN profile m = 2.

method shows only a modest improvement over the un-
mapped method.

The benefit of the complex mapping in this case is more
evident at higher wavenumbers. For example, for the integer
wavenumber m = 2, the “‘true’’ nondimensional frequency and
growth rate are

w, = 0.181589254818, w, = 0.041421414230. (37)
Again, a numerical optimization of § is required which results
in the optimal quadratic map with P = —{.1955 + 0.1459i
and & = 1.214, whilst the unmapped method has only 6 = 1.029.

The convergence of both methods for m = 2 is illustrated
in Fig. 8b, where again the logarithm of the relative errors in
both the frequency and growth rate are plotted as funciions of
N. In contrast 1o Fig. 8a convergence of both methods is slower,
but the complex mapping is still far more accurate. The differ-
ence between the methods is more stark when solving the
problem near the upper limit of unstable wavenumbers. In
this region the unmapped method has little hope of resolving
the singularity.
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5. SUMMARY

In this paper, we have re-examined the polynomial complex
maps of Boyd [3] and produced a more general cubic mapping
which includes the quadratic map. A natural generalization to
a higher degree was also explicitly given. An analytic result
for the optimal quadratic complex map, given a single arbitrary
critical latitude, was produced, but a more general analytic
result appears unlikely.

Both the quadratic and cubic complex maps were tested on
model problems using both finite difference and pseudospectral
methods. Both methods benefited from the use of the complex
maps, particularly the pseudospectral method which is more
sensitive to the critical latitudes. This sensitivity is offset by
its ability to produce highly accurate solutions. The barotropic
vortex model was then solved with the quadratic mapped pseu-
dospectral method for two velocity profiles. Again, vast im-
provements over the unmapped method were observed, particu-
larly at the upper limit of unstable wavenumbers.

Our results for the barotropic vortex model (see Fig. 8)
clearly show that the complex map can still be of considerable
benefit even when the critical latitude is not on the real axis.
This is in contrast to the suggestion in [9] that a complex
mapping may not be needed in such cases. Even at maximum
growth rates (occurring at m = 1.14 for the CW profile) the
critical latitudes may still be significantly close to the real axis
to warrant a complex mapping.

The complex maps demonstrated in this paper are easy to
implement and give remarkable gains in accuracy. This suggests
to us that they should always be considered when solving
problems containing critical latitudes, including the large class
generated by inviscid hydrodynamic stability calculations. We
believe the complex mapped pseudospectral methods will be
sirong competitors to existing technigues.
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